Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Science ; 371(6536): 1374-1378, 2021 03 26.
Article in English | MEDLINE | ID: covidwho-1255508

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (Mpro) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing Mpro inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals. All compounds inhibited SARS-CoV-2 Mpro activity in vitro, with 50% inhibitory concentration values ranging from 7.6 to 748.5 nM. The cocrystal structure of Mpro in complex with MI-23, one of the most potent compounds, revealed its interaction mode. Two compounds (MI-09 and MI-30) showed excellent antiviral activity in cell-based assays. In a transgenic mouse model of SARS-CoV-2 infection, oral or intraperitoneal treatment with MI-09 or MI-30 significantly reduced lung viral loads and lung lesions. Both also displayed good pharmacokinetic properties and safety in rats.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/pathology , COVID-19/virology , Cell Line , Cell Survival/drug effects , Chemokine CXCL10/metabolism , Disease Models, Animal , Drug Design , Humans , Interferon-beta/metabolism , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Transgenic , Oligopeptides , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Protease Inhibitors/therapeutic use , Protease Inhibitors/toxicity , Rats , Rats, Sprague-Dawley , Viral Load/drug effects , Virus Replication
2.
Zool Res ; 42(3): 335-338, 2021 May 18.
Article in English | MEDLINE | ID: covidwho-1231642

ABSTRACT

The global outbreak of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as of 8 May 2021, has surpassed 150 700 000 infections and 3 279 000 deaths worldwide. Evidence indicates that SARS-CoV-2 RNA can be detected on particulate matter (PM), and COVID-19 cases are correlated with levels of air pollutants. However, the mechanisms of PM involvement in the spread of SARS-CoV-2 remain poorly understood. Here, we found that PM exposure increased the expression level of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in several epithelial cells and increased the adsorption of the SARS-CoV-2 spike protein. Instillation of PM in a hACE2 mouse model significantly increased the expression of ACE2 and Tmprss2 and viral replication in the lungs. Furthermore, PM exacerbated the pulmonary lesions caused by SARS-CoV-2 infection in the hACE2 mice. In conclusion, our study demonstrated that PM is an epidemiological factor of COVID-19, emphasizing the necessity of wearing anti-PM masks to cope with this global pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/chemically induced , COVID-19/immunology , Particulate Matter/adverse effects , SARS-CoV-2 , Adsorption/drug effects , Animals , Disease Susceptibility/chemically induced , Disease Susceptibility/immunology , Epithelial Cells/metabolism , Mice , Mice, Inbred Strains , Particulate Matter/chemistry , RNA, Viral/analysis , SARS-CoV-2/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects
3.
Zool Res ; 42(2): 161-169, 2021 Mar 18.
Article in English | MEDLINE | ID: covidwho-1070034

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) continue to impact countries worldwide. At present, inadequate diagnosis and unreliable evaluation systems hinder the implementation and development of effective prevention and treatment strategies. Here, we conducted a horizontal and longitudinal study comparing the detection rates of SARS-CoV-2 nucleic acid in different types of samples collected from COVID-19 patients and SARS-CoV-2-infected monkeys. We also detected anti-SARS-CoV-2 antibodies in the above clinical and animal model samples to identify a reliable approach for the accurate diagnosis of SARS-CoV-2 infection. Results showed that, regardless of clinical symptoms, the highest detection levels of viral nucleic acid were found in sputum and tracheal brush samples, resulting in a high and stable diagnosis rate. Anti-SARS-CoV-2 immunoglobulin M (IgM) and G (IgG) antibodies were not detected in 6.90% of COVID-19 patients. Furthermore, integration of nucleic acid detection results from the various sample types did not improve the diagnosis rate. Moreover, dynamic changes in SARS-CoV-2 viral load were more obvious in sputum and tracheal brushes than in nasal and throat swabs. Thus, SARS-CoV-2 nucleic acid detection in sputum and tracheal brushes was the least affected by infection route, disease progression, and individual differences. Therefore, SARS-CoV-2 nucleic acid detection using lower respiratory tract samples alone is reliable for COVID-19 diagnosis and study.


Subject(s)
COVID-19 Testing/veterinary , COVID-19/diagnosis , SARS-CoV-2/genetics , Animals , Antibodies, Viral , Disease Models, Animal , Haplorhini , Humans , Longitudinal Studies , Pharynx/virology , Predictive Value of Tests , SARS-CoV-2/immunology , Specimen Handling , Sputum/virology
4.
Cell Res ; 31(1): 17-24, 2021 01.
Article in English | MEDLINE | ID: covidwho-953056

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic worldwide. Currently, however, no effective drug or vaccine is available to treat or prevent the resulting coronavirus disease 2019 (COVID-19). Here, we report our discovery of a promising anti-COVID-19 drug candidate, the lipoglycopeptide antibiotic dalbavancin, based on virtual screening of the FDA-approved peptide drug library combined with in vitro and in vivo functional antiviral assays. Our results showed that dalbavancin directly binds to human angiotensin-converting enzyme 2 (ACE2) with high affinity, thereby blocking its interaction with the SARS-CoV-2 spike protein. Furthermore, dalbavancin effectively prevents SARS-CoV-2 replication in Vero E6 cells with an EC50 of ~12 nM. In both mouse and rhesus macaque models, viral replication and histopathological injuries caused by SARS-CoV-2 infection are significantly inhibited by dalbavancin administration. Given its high safety and long plasma half-life (8-10 days) shown in previous clinical trials, our data indicate that dalbavancin is a promising anti-COVID-19 drug candidate.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Teicoplanin/analogs & derivatives , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Caco-2 Cells , Chlorocebus aethiops , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Protein Binding/drug effects , Teicoplanin/pharmacokinetics , Teicoplanin/pharmacology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL